	•	•	
Co	rrıg	(e :	Maths
		_	

Nbr pages:

6 gg	<u>Examen</u> : Baccalauréat								
	<u>Session</u> : 2017								
Série :	A 1	A2	A4	С	D	G	Stc	Sti	
Coeff.:			3						
<u>Durée</u> :			3						

Tous les sujets et corrigés des BAC Comoriens sur le site de l'AEM Mdjankagnoi https://aem-20.webself.net/

Série A4

Exercice 1:

Partie A: Résolution des équations.

1. $x^2 - 4x - 21 = 0$. $\Delta = b^2 - 4$ oc; ovec a = 1, b = -4 et c = -21. $\Delta = (-4)^2 - 4(1)(-21) = 100 = 10^2$

$$x_1 = \frac{-b - \sqrt{\Delta}}{2a} = \frac{4 - 10}{2} = -3 \text{ of } x_2 = \frac{-b + \sqrt{\Delta}}{2a} = \frac{4 + 10}{2} = 7.$$

$$5 = \{-3, 7\}.$$

2. En déduire la solution de :

a) $(\ln x)^2 - 4(\ln x) - 21 = 0$

Posons $X = \ln x$; l'équation devient $X^2 - 4X - 21 = 0$.

D'après 1) an a : X=-3 ou X=7.

Pour $X = -3 \odot \ln x = -3 \odot x = e^3$. Pour $X = 7 \odot \ln x = 7 \odot x = e^7$.

D'où, l'ensemble de solution $S = \{e^{i\beta}, e^{\gamma}\}$

b)
$$\ln x + \ln (x-4) = \ln 21$$
.

Condition d'existence : l'équation existe $\Leftrightarrow x > 0$ et $x - 4 > 0 \Leftrightarrow x > 0$ et x > 4.

$$D_e =]4; +\infty[$$
.

Par conséquent, pour tout réel x de De

$$\ln x + \ln(x-4) = \ln 21 \Leftrightarrow \ln[x(x-4)] = \ln 21 \Leftrightarrow x(x-4) = 21 \Leftrightarrow$$

$$x^2 - 4x - 21 = 0$$
; et d'après 1) $x = -3 \notin D_e$ ou $x = 7 \in D_e$. D'où $S = \{7\}$.

c)
$$e^{4x} - 4e^{2x} - 21 = 0 \Leftrightarrow (e^{2x})^2 - 4(e^{2x}) - 21 = 0$$
. Posons: $t = e^{2x}$.

L'équation devient $t^2 - 4t - 21 = 0 \Leftrightarrow t = -3$ ou t = 7.

Pour
$$t = -3 \Leftrightarrow e^{2x} = -3$$
 impossible. Pour $t = 7 \Leftrightarrow e^{2x} = 7 \Leftrightarrow x = \frac{\ln 7}{2}$.

D'où, l'ensemble de solution
$$S = \left\{ \frac{\ln 7}{2} \right\}$$
.

Partie B: Suite numérique.

 (U_n) , une suite arithmétique de raison \mathbf{r} tel que $U_4 = 10$ et $U_7 = 19$.

1. a)
$$U_n - U_p = (n-p)r \Leftrightarrow (7-4)r = U_7 - U_4 \Leftrightarrow 3r = 19 - 10 \Leftrightarrow 3r = 9 \Leftrightarrow r = 3$$
.

b) (U_n) , suite arithmétique de raison r = 3 > 0, alors elle est croissante.

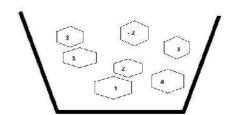
- 2. a) $U_n U_p = (n p)r \Leftrightarrow U_4 U_0 = (4 0)r \Leftrightarrow 10 U_0 = 4 \times 3 \Leftrightarrow U_0 = -2$. b) $U_n = U_0 + nr \Leftrightarrow U_n = 3n - 2$.
- 3. a) $U_n = 58 \Leftrightarrow 3n-2 = 58 \Leftrightarrow n = 20$.

b) Nous remarquons la somme $S = -2 + 1 + 4 + 10 + 13 + 16 + 19 + \frac{10}{2} + 58 \text{ est de la}$ forme $S = U_0 + U_1 + U_2 + \frac{10}{2} + U_{20}$. Alors $S = \frac{(20+1)(U_0 - U_{20})}{2} = \frac{21(-2+58)}{20} = 588$

Exercice 2:

Partie A: Calcul de probabilité

La boite contenant les 7 papiers marqués : -3 ; -2 ; -1; 1; 2; 3; 4.



1. Nombre de tirages possible : $C_2^2 = 21$

2. a) Card A =
$$C_3^2 = 3$$
; alors P (A) = $\frac{Card A}{Card \Omega} = \frac{3}{21} = \frac{1}{7}$

b) Card B =
$$C_3^1 \times C_4^1 = 12$$
; alors $P(B) = \frac{Card B}{Card \Omega} = \frac{12}{21} = \frac{4}{7}$.

Partie B: Statistique à deux variables.

1. Coordonnées du point moyen des nuages G.

$$\overline{x} = \frac{1+2+3+4+5}{5} = 3$$
 et $\overline{y} = \frac{3+2+5+10+5}{5} = 5$. D'où G(3; 5).

2. Covariance :

$$Cov(x;y) = \frac{1}{5} \sum_{i=1}^{5} x_i y_i - \overline{x \times y} = \frac{1 \times 3 + 2 \times 2 + 3 \times 5 + 4 \times 10 + 5 \times 5}{5} - 3 \times 5 = 2,4.$$

La droite d'ajustement linéaire a pour équation y = 4,2 x - 7,6.
 Au 10^{ème} jour, correspond x = 10. D'où y = 4,2 10 - 7,6 = 34,4. On peut estimer 34 abonnées.
 Problème :

Partie A: Lecture d'une courbe.

- 1. $\lim_{x \to -\infty} g(x) = 0$, $\lim_{x \to +\infty} g(x) = -\infty$, g(1) = e, g(2) = 0 et g'(1) = 0.
- 2. Pour tout x de l'intervalle $]-\infty$; 2], $g(x) \ge 0$ car (C_g) est au dessus de l'axe des abscisses.

Pour tout x de l'intervalle [2; + ∞ [, $g(x) \le 0$ car (C_g) est au dessous de l'axe des abscisses.

Dans tout ce qui va suivre, on prendra $q(x) = (-x+2)e^x$.

Partie B: Etude d'une fonction f.

La fonction f définie sur IR par : $f(x) = (-x+3) e^x$.

- 1. $\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} (-x+3)e^x = (-\infty)(+\infty) = -\infty; car \lim_{x \to +\infty} (-x+3) = -\infty \text{ et } \lim_{x \to +\infty} e^x = +\infty.$
- 2. a) On a: $(-x+3)e^x = 3e^x xe^x = f(x)$.

Autre méthode :

Factorisons l'expression $3 e^x - x e^x$:

On a:
$$3e^x - xe^x = e^x(3-x) = (-x+3)e^x = f(x)$$
. D'où $f(x) = 3e^x - xe^x$.

b)
$$\lim_{x \to -\infty} f(x) = \lim_{x \to -\infty} (3e^x - xe^x) = 0 - 0 = 0$$
; car $\lim_{x \to -\infty} e^x = 0$ et $\lim_{x \to -\infty} xe^x = 0$.

La droite d'équation v = 0 est un asymptote de (C_f) en $-\infty$.

3.
$$a) f'(x) = [(-x+3) e^x]' = (-x+3)' e^x_{+} \cdot (-x+3) (e^x)' = -e^x_{+} \cdot (-x+3) e^x_{-}$$

= $(-1-x+3) e^x_{-} = (-x+2) e^x_{-} = g(x)$. D'où $f'(x) = g(x)$.

3. b) D'après A] 2), Pour tout x de l'intervalle $]-\infty$; 2], $f'(x) = g(x) \ge 0$; alors la fonction f est croissante sur cet intervalle.

Pour tout x de l'intervalle $[2; +\infty[$, $f'(x) = g(x) \le 0$; alors la fonction f est décroissante sur cet intervalle.